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Localized short-range correlations in the spectrum of the equal-time correlation matrix
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We suggest a procedure to identify those parts of the spectrum of the equal-time correlation matrix C where
relevant information about correlations of a multivariate time series is induced. Using an ensemble average
over each of the distances between eigenvalues, all nearest-neighbor distributions can be calculated individu-
ally. We present numerical examples, where (a) information about cross correlations is found in the so-called
“bulk” of eigenvalues (which generally is thought to contain only random correlations) and where (b) the
information extracted from the lower edge of the spectrum of C is statistically more significant than that
extracted from the upper edge. We apply the analysis to electroencephalographic recordings with epileptic

events.
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I. INTRODUCTION

In recent years, the application of tools known from ran-
dom matrix theory (RMT) to time series analysis has become
more and more popular. The application of RMT techniques
to a variety of multivariate data sets like financial data [1-6],
electroencephalographic [7], magnetoencephalographic re-
cordings [8], climate data [9], internet traffic [10], and others
has been reported. One of the main goals of the employment
of RMT measures in time series analysis is to separate in the
spectrum of the equal-time correlation matrix C genuine in-
formation about the correlation structure from random corre-
lations (generated by the finite size of the time window used
to construct C) and noise. In general, the assumption was
made that those eigenvalues \ and respective eigenvectors v
of the correlation matrix, which can be described by random
matrix ensembles are dominated by random correlations and
noise, whereas deviations from the RMT behavior indicate
true information about the correlation structure. The natural
null hypothesis for the comparison of empirical results is
Wishart ensembles (WE), i.e., ensembles of correlation ma-
trices constructed from signals of independent Gaussian
white noise. WE are characterized by two parameters, the
length 7 and the dimension M of the multivariate data set.

In Ref. [1], properties of the empirical correlation matrix
constructed from financial data have been studied. A clear
separation of a few large eigenvalues from the remaining
ones was observed. It was shown, that apart from the few
largest \, the level density p(\) of the empirical correlation
matrix can be approximately fitted by the analytical formula
for the WE, which is valid in the limit 7',M —c with T/M
=cst.> 1. In Ref. [5] it was demonstrated (see Fig. 3 of Ref.
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[5]) that the observed deviations from the level density of the
corresponding WE are not caused by the finite size of the
empirical data set. It was argued that these deviations are due
to the influence of the few well-separated large eigenvalues.

The results of Ref. [1] have been confirmed by a series of
subsequent papers, analyzing not only the level density but
also applying more sophisticated RMT tools, which measure
the correlation properties of the spectrum of eigenvalues,
such as, e.g., the nearest-neighbor distribution P(s) or the
number variance 3%(/) (see, e.g., Refs. [11,12]). In all those
papers empirical results have been compared to the analyti-
cally known ones of the Gaussian orthogonal ensemble
(GOE). Strictly speaking, an ensemble of (empirical or ran-
dom) correlation matrices does not belong to the GOE, but as
the differences of the statistical properties between WE and
GOE decay rapidly as one goes away from zero in the spec-
trum of the correlation matrix [5], the GOE seems to be an
appropriate choice for a null hypothesis for these measures.

Independently of the type of data considered, the applica-
tion of RMT tools seemed to confirm the statement that the
“bulk” of eigenvalues (i.e., all those below a few, well-
separated ones) are strongly contaminated by noise and con-
sequently do not contain any valuable information. Within
the statistical errors, the nearest-neighbor statistics as well as
the results for the number variance calculated from the em-
pirical data coincide very well with the universal properties
of the GOE. These results led many authors to the generally
accepted conclusion that only the largest eigenvalues (and
their respective eigenvectors) contain relevant information,
while the remaining part of the spectrum, the bulk, is mainly
dominated by noise. Such statements are in agreement with
the philosophy of the principal component analysis (PCA),
where only a certain number of the largest eigenstates of the
covariance matrix are used to project the data onto its prin-
cipal components [13].
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However, the results presented in Ref. [1,3] and subse-
quent publications met a certain criticism. Besides the fact
that in Ref. [1] no formal statistical test was applied in order
to corroborate the final conclusion, in Refs. [14,15] it was
analytically shown and confirmed by numerical examples
that the level density of the so-called bulk is certainly not in
the Wishart class and, hence, might contain information
about the correlation structure. Similar conclusions are
drawn in Ref. [16]. Moreover, in Refs. [2,5,6] significant
deviations from the GOE at the lower edge of the spectrum
of the empirical correlation matrix were reported: The domi-
nant components of the eigenvectors corresponding to the
lowest eigenvalues stem from pairs of time series that have
the largest cross-correlation coefficients C;; of the whole
sample.

This observation can be understood by the fact that genu-
ine information about the correlations is induced in the spec-
trum of the correlation matrix via (nonrandom) repulsions of
eigenstates between both edges [6,17]: The special features
of the correlation structure of the multivariate data set deter-
mine how many states at the edges repel and how strong the
displacement of the eigenvalues will be [17]. On the other
hand, if there are large groups of correlated time series, the
same mechanism can induce a (possibly subtle) repulsion
between eigenvalues that are far from the boundaries of the
spectrum. Such information can be washed out by the spec-
tral average, which is usually employed while calculating the
RMT correlation measures.

The aim of the present paper is to confirm the usefulness
of the RMT measures for the application to data analysis
from a slightly different point of view. By simply normaliz-
ing each of the level distances by its ensemble average, one
can calculate the nearest-neighbor distribution for each of the
distances individually. This way of unfolding permits us to
distinguish precisely those parts of the spectrum that are
dominated by noise from those that carry valuable informa-
tion about the correlation structure of a system. The proposed
method does not depend on the spectral region in which the
information is induced. Furthermore, we present examples
where the information extracted at the lower part of the spec-
trum is statistically more significant than the results obtained
from the largest eigenvalues and give clear evidence that
genuine information within the central part of the spectrum
of C is washed out when spectral averages are employed.
Finally, we show that the results presented so far are not only
theoretical considerations but may have impact on the analy-
sis of such experimental data where temporal changes of the
correlation structure are mainly visible at the lower edge of
the spectrum of the correlation matrix.

II. BASIC METHODOLOGY

The equal-time correlation matrix is constructed from an
M-dimensional multivariate data set X;(k) of length T, where
i=1,...,M and k=1, ...,T. First the raw time series is nor-
malized according to
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Xi(k) = =5, (1)

where X; and o, respectively, denote the mean value and
standard deviation of X;(k). Then the equal-time correlation
matrix C is computed by [18]

T
Cy= 3 RWF). 2)
Tk=1

With \; and v; we denote the eigenvalues and eigenvectors of
the correlation matrix C,

Cu;=\p;, 3)

where the eigenvalues \; shall be ordered according to size,
such that A <\,=<--- =<\, The distribution of the eigen-
values is directly related to the amount of correlations of the
multivariate data set [17].

The normalization, Eq. (1), has the effect of removing
amplitude information and a possible offset from each of the
X,(k), such that the measured cross correlations exclusively
reflect relationships between the shapes and phases of the
signals. In addition, the normalization provides a well-
defined scale, i.e., the matrix elements of C vary between +1
(completely correlated series) and —1 (completely anticorre-
lated series). Furthermore, the normalization ensures that

Tr(C) =E c,-,:E \N=M. (4)

Therefore, if one of the eigenvalues alters, its change has to
be compensated by some others such that condition (4) is
still fulfilled.

Properties of interest in RMT theory are correlations
within the spectrum of eigenvalues of a given (Hamiltonian)
matrix. The two most prominent measures are the nearest-
neighbor distribution P(s) and the number variance 3%([)
[11,12,19,20]. The calculation of these measures requires the
transformation of the level density p(\) to a uniform distri-
bution such that the average level distance is unity every-
where; this procedure is known as “unfolding” [12,20]. To
this end, one usually calculates the so-called accumulated
level density

A
p(N")d\’, (5)

—o0

N(\) =

which counts the number of states in the interval [—o,\]. It
can be split into a smooth and a fluctuating part

N()\) = Nsmoolho\) + Nﬂuct()\) . (6)
Because the fluctuating part of the level density

dNﬂuct()\)

d\ @

pﬂuct()\) =

vanishes on the average, the mean level density is solely
given by
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dN, smooth ( }\)

d\ ®

psmooth()\) =
Once the smooth part Ng,,om(\) of the accumulated level
density is known, the eigenvalues A; of the unfolded spec-
trum can be calculated by the transformation

Ai = Nsmoolh()\i) . (9)

Hence, the crucial problem of unfolding a spectrum is to
find the correct form of pgpeom(N). In cases where the ana-
lytical formula for the smooth part of the level density is
unknown, one has to perform a fit of the numerical probabil-
ity distribution of the eigenvalues. One common procedure is
a polynomial fit to the numerically obtained accumulated
level density N(\). This fit function is then used to perform
the unfolding transformation (9).

A different approach was followed in Refs. [2,5]. It was
assumed that the theoretically known expression for the level
density of the WE can be used for pg,oom(N) in the unfolding
procedure. In the limits M —o and T— %, such that Q
=T/M stays constant, the probability distribution of the ei-
genvalues of the WE is given by [21]

0 VN =M=\
275 A '

Py = (10)

In Eq. (10) \, are given by

1 /1
Ne=1+—221/— 11
=145 0 (11)

and 0?=1/MZY 07 denotes the total variance of the X;(k).
For finite values of M and 7, deviations occur at both edges
of the spectrum [22]. Using N, [5] or the variance ¢ of the
signal [1] as fit parameters and integrating Eq. (8) the smooth
part of the accumulated level density Ng,oom(N) can be ob-
tained, which in turn is used for the unfolding procedure (9).
In principle, neither A, nor the variance of the multivariate
data sets are free parameters; however, the resulting fit might
describe the level density of the empirical correlation matrix
satisfactorily well.

After the unfolding procedure, correlation functions such
as P(s) or 2%(/) can be extracted numerically and conse-
quently used for comparison with the analytical results, as
derived from random matrix ensembles. Independent of the
way by which the fit procedure (as required by the unfold-
ing) is designed, the subsequent calculation of the RMT cor-
relation measures resembles an average over a certain central
interval of the unfolded level density (spectral average [20]);
the boundaries usually have to be neglected. This causes a
twofold problem: First, as correlations in many cases induce
level repulsions at the edges of the eigenvalue spectrum, ex-
actly these interesting repelling levels might be left out when
calculating the correlation measures in the usual way. Sec-
ond, even if the level repulsion occurs in the central part of
the spectrum, the extractable information can be localized in
a markedly narrow part of the whole spectrum—on occasion
in the distance between two states only. In such cases, small
localized deviations from the universal properties of the
GOE might be washed out due to the averaging process.
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In order to be able to check how the nonrandom level
repulsion caused by a specific correlation structure of the
multivariate data set influences the results of the RMT mea-
sures, we propose an individual unfolding for each of the
M —1 distances by

Niv1 =N

T N (12

where (\;;;—\;) is the ensemble average of the distance be-
tween two neighboring eigenvalues. The normalization (12)
allows a clean unfolding along the whole spectrum yielding
(sp=1 for all i=1,...,M—1 without the application of any
kind of fit procedure. Numerical inaccuracies, which might
occur especially at the edges of the spectrum, are avoided
completely. Even more important at this place is that this
procedure permits us to calculate the nearest-neighbor distri-
bution for each of the distances separately. Hence, one is able
to detect precisely in which part of the spectrum deviations
from the RMT predictions appear. Before applying Eq. (12)
to numerical and empirical test data, we have successfully
checked the performance of this unfolding at ensembles of
GOE and GSE matrices as well as Poisson distributions.

III. MODEL SYSTEMS

As a first model system we consider a standard class of
dynamical systems; the sum of N, sine waves with mutually
incommensurate frequencies,

Ny

X{(k) = 2 sinQafk+3,), i=1,...,M. (13)
j=1

Here we choose equal amplitudes for all sines. Data sets
generated by such systems sample N tori [23], i.e., geo-
metrical objects of topological dimension equal to N;. Be-
cause the correlation structure of this system class can be
perfectly controlled, it serves as an ideal test system.

In our application of Eq. (13) the set of frequencies f; is
sampled randomly from a uniform distribution on the inter-
val [0, finax] With f,.x=20 frequency units, where a time unit
is arbitrarily defined as 256 data points. The same set of
frequencies is chosen for all i, whereas the set of random
partial phases J;; is assigned from the interval [0,27] to each
time series X; independently. In all examples of Nj-tori we
choose N;=1000 frequencies and M =20 time series. For the
length of the time series we take T=2048 corresponding to 8
time units. We create an ensemble of N=100 000 indepen-
dent realizations of X;(k) and calculate the correlation matri-
ces (2).

The correlation structure of the multivariate data set (13)
is controlled by the partial phases §;;. If the &; are uniformly
distributed between 0 and 27, the X; are mutually uncorre-
lated. Any deviation from the uniform distribution will cause
phase-shape correlations between the time series. In order to
generate correlations, we choose for some X;(k), Gaussian
distributed &;; modulo 271 with prespecified mean u; and
variance og.

In order to treat an example of a real dynamical system,
we employ data sets from coupled Rossler systems [17],
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Xip==w1 Y 1,=Z s+ Xy, =X, ,),
Yip= 0 X0+ BY 15+ 0¥y =Y 5),

Z1,=0.1+Z5(X,,-8.5), (14)

with w;=0.98, w,=1.03, and 8=0.28. 7 denotes the cou-
pling strength between two oscillators. The Rossler system is
of special interest in the present context, because in Ref. [24]
it was argued, that due to the funnel characteristics of the
underlying attractor, the detection of relationships like phase
synchronization between two coupled units is particularly
difficult. Therefore the Rossler system is an ideal testing
ground for the method developed in this paper. Instead of
using only two coupled units like in Ref. [24], we consider a
set of M =20 Rossler equations (14), where only two are
coupled as described by Eq. (14) with a nonzero value of 7,
while the M -2 remaining systems stay uncoupled (7=0).
We generate a multivariate time series by sampling the X
components of each system.

IV. RESULTS OBTAINED FOR SIMULATED SYSTEMS

As a first example of a system, where the correlation pat-
tern can be perfectly controlled, we consider Nj-tori [Eq.
(13)]. For the completely uncorrelated case, viz., when the
partial phases of all signals are uniformly distributed, the
correlation matrix of the N -tori are close to Wishart matrices
of the same dimension. Consequently, the nearest-neighbor
distribution of all level distances of the uncorrelated N -tori
show GOE behavior with high accuracy (results not pre-
sented in a figure). For only two outermost distances we
observe slight deviations to the theoretical curve for the
GOE. This border effect is of the same order of magnitude as
for an equivalent ensemble of GOE or Wishart matrices
(when T>M>1).

First we consider Ny-tori where only 2 of M=20 series are
correlated via Gaussian distributed partial phases with the
same mean ws=7/2 and standard deviation os=3m/2. For
the creation of the remaining X;(k), uniformly distributed
random partial phases are used. After diagonalizing the cor-
relation matrix (2) we perform the individual unfolding [Eq.
(12)] in order to calculate the nearest-neighbor distribution
for each distance. The results at the edges are shown in Fig.
1. As one can see, a clear deviation from the universal results
of the GOE appears for s; and s,9. Even for comparatively
poor statistics of only 1000 matrices (histograms drawn with
a gray line) the deviations appearing for P(s,) and P(s9) are
obvious. The distances between the two lowest and largest
eigenvalues show a comparatively narrow distribution
around unity whereas the behavior of all other distances
s, ++s1g can be perfectly described by the universal proper-
ties of the GOE.

A similar test system has already been studied in Ref.
[17]. Tt has been found that independently of which of the
two X;(k) correlate a repulsion between the largest and low-
est eigenvalue \; occurred. As Fig. 1 confirms, not only the
average magnitude of the corresponding level distances in-
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FIG. 1. Nearest-neighbor distribution obtained by individual un-
folding for N-tori where two from 20 time series are correlated due
to Gaussian distributed partial phases with mean us=7/2 and stan-
dard deviation og=/2. Shown are the results for (a) s9, (b) 513,
(c) 55, and (d) s,. The theoretical result for the GOE is drawn as a
solid line. The histograms drawn by a black and gray line has been
calculated for an ensemble of 100000 and 1000 matrices,
respectively.

creases, but also its stiffness. Note that for comparison in this
and all other figures of this paper, we show the nearest-
neighbor distribution for the GOE (and not the Wigner sur-
mise).

Two aspects of the results shown in Fig. 1 are remarkable.
First, a sharp cut between the noisy and nonrandom parts of
the spectrum is clearly visible in the spacing statistics. The
diagonalization of the correlation matrix provides a kind of
filter, which distinguishes precisely between random and
nonrandom eigenstates. Second, within the given statistics no
border effects are visible, not even in the distribution for s,
and s;g. In the example shown in Fig. 1 the behavior of the
random part of the spectrum is described perfectly well by
the universal behavior of the central part of the GOE.

In a second example we investigate the properties of the
Rossler system (14) where two of 20 units are coupled with
7=0.049. In Fig. 2 we show the nearest-neighbor distribu-
tion for s9 and s;. Like in the former example, all other
distances behave exactly like the GOE in the center. What is
remarkable in this case is that the deviations from GOE are
much more pronounced in s; than at the upper edge of the
spectrum of C. For an ensemble of only 1000 matrices [Fig.
2(a)], the Kolmogorov-Smirnov test (KS test) [25] gives a
100% coincidence with the GOE for 5,9 and even for 10
matrices [Fig. 2(b)] the KS test gives a probability of 99.7%
that the empirical distribution is of GOE-type. Whereas in
the latter case a careful visual inspection of the figure reveals
a slight shift of the histogram to the left, such an effect is not
visible for the poorer statistics. For the distance s; [Fig. 2(c)]
the KS test rejects completely the GOE hypothesis, even for
poor statistics of only a few hundred matrices. It is evident
that in the given example, the information extracted at the
lower edge is statistically much more significant than for the
largest eigenvalue. The same tendency, although not as pro-
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FIG. 2. Nearest-neighbor distribution obtained by individual unfolding for the Rossler system where two from 20 time series are
correlated via diffusive coupling with strength 7=0.049. Shown are the results for distance s considering an ensemble of (a) 1000 and (b)
100 000 matrices and (c) the nearest-neighbor distribution for distance s, for 1000 (gray histogram) and 100 000 (black histogram). The

theoretical result for the GOE is drawn as a solid line.

nounced as in the given example, can be already seen in the
former case of the N-tori (see Fig. 1). Also, here the distri-
bution for s, is slightly narrower than that for 5.

The differences between P(s;) and P(s;) can be ex-
plained by the special role of the eigenvector v, of C that
corresponds to the largest eigenvalue. This eigenvector is in
some sense the most collective one [26-28] and may act as a
kind of “doorway state” [29]. Even in the extreme case
where only a small subset of signals X;(k) correlate, the ei-
genvector v, of C takes up contributions not only within the
correlated subspace but also from all other basis states [17].
As a consequence, v, is always influenced by both the ran-
dom and nonrandom parts of the correlations of the whole
data set. For the same reason, also tiny correlations between
all X;(k) might cause a huge separation of the largest eigen-
value from the rest of the spectrum [14] and for the case of
financial data, the behavior of v, has been interpreted as the
dynamics of the entire market [2,4,5]. The eigenvector v,
corresponding to the smallest eigenvalue, on the other hand,
is almost exclusively determined by genuine correlations (at
least in situations where only a few time series correlate) and
therefore nonrandomly oriented in the correlating subspace
(see Fig. 3 of Ref. [17]). As a consequence, the nearest-
neighbor distribution of s; deviates more from the GOE than
Sy—1, OF S1g in our case.

Next we study a case where the signature of correlations
between the X;(k) is implemented in the central part of the
spectrum of C. In Ref. [17] it was shown that correlations
between K<<M signals X;(k) affect K eigenvalues such that
the K—1 smallest ones decrease whereas the largest eigen-
value will be displaced to higher values. In this case we
expect the distances P(sg_;) and P(sy,_;) to deviate from the
GOE. Again we employ the N-tori in order to simulate such

1.0

a situation where K=8 <M =20 signals are correlated with
ms=os=1/2. Then we normalize the distances to its en-
semble average [Eq. (12)] and calculate the nearest-neighbor
distributions. Some results are shown in Fig. 3. As expected,
differences to the GOE are only visible for P(s;) [Fig. 3(b)]
and P(s,9) (not shown). For the remaining ones a KS test
gives a 100% coincidence for the numerical results with the
GOE, whereas the differences between P(s;) and the GOE
are still visible even with poor statistics.

Again, as in the examples discussed before, the part of the
spectrum where genuine information is induced is well sepa-
rated from the random part. Even the distances in the direct
neighborhood of s and 5,9 reproduce the GOE behavior with
high accuracy. The KS test provides a 100% probability for
the coincidence with the GOE result for all spacings, with
the exception of s and s9. If we calculate a spectral average,
over all distances with the exception of the one to the well-
separated largest level, which is equivalent to the unfolding
procedure applied in Refs. [1-10], the averaged nearest-
neighbor distribution becomes close to the GOE prediction
(Fig. 4). Calculating the spectral average, the effect of the
nonrandom displacement of the eigenstates 1 to 7 is washed
out and the tiny differences between the GOE and the spec-
tral averaged nearest-neighbor distributions of the correlated
N-tori are visible for large ensembles only—a requirement
that is hardly fulfilled for the majority of experimentally ac-
cessible data. For the given case, the KS test gives a 100%
probability for the coincidence of the spectral averaged spac-
ing statistics with the GOE. A very similar result is obtained
for the case of eight coupled Rossler systems.

V. ANALYSIS OF EXPERIMENTAL DATA

Up to now, our arguments were based on model-generated
data. In order to put the results in a more general context we
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FIG. 3. Nearest-neighbor distribution obtained by individual unfolding for Ny-tori where eight from 20 time series are correlated with
os=/2. Shown are the results for (a) sg, (b) 57, and (c) s¢. The theoretical result for the GOE is drawn as a solid line. The histograms drawn
by a black and gray line has been calculated for an ensemble of 100 000 and 1000 matrices, respectively.
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FIG. 4. Spectral averaged nearest-neighbor distribution for
N-tori where eight from 20 time series are correlated. The theoret-
ical result for the GOE is drawn as a solid line. The histograms
drawn by a black and gray line has been calculated for an ensemble
of 100 000 and 1000 matrices, respectively.

demonstrate its relevance by analyzing real-world data. In
this paper we consider an electroencephalogram (EEG) of a
ten-year-old male patient suffering from generalized epilepsy
(absence seizures). Figure 5(a) presents a segment of 125 s
of the electric potential from one of the M =19 scalp elec-
trodes (F3 over the left frontal lobe in clinical terminology).
The time series were referenced in a source density deriva-
tion according to the Hjorth method [30]. The data were
sampled with a 12-bit A/D conversion at a sampling rate of
256 Hz and the 50 Hz ac component was filtered. While the
EEG of normal brain dynamics looks irregular and only par-
tially correlated, during an epileptic seizure of absence type
the EEG displays a strongly correlated thythm of compara-
tively large amplitude and well-defined frequency close to
3 Hz. The epileptic activity of the examined example starts
almost simultaneously in all electrodes at about 499 s and
lasts up to 512 s. At approximately 405 and 485 s artifacts
caused by muscular movement can be seen.

When analyzing experimental data such as EEG record-
ings with the methods proposed in the present paper, two
questions arise. First, correlation matrices have to be con-
structed from possibly nonstationary data. To this end one
can shift a window over the time series or parts of it. In the
present paper we have chosen 7=75 data points (correspond-
ing to approximately 0.29 s) for the window size and a maxi-
mal overlap of 7—1 points. The second question is how to
define an appropriate null hypothesis for the comparison
with the empirical nearest-neighbor distributions. While for
the WE the GOE seems to be adequate, for the present em-
pirical ensembles of correlation matrices this null hypothesis
cannot be used. The brain activity changes continuously even
in the resting state and therefore also a continuously chang-
ing correlation structure has to be expected. Moreover, static
correlations different from those of the GOE are induced due
to the chosen reference point [31], in our case the Hjorth
transformation. For such reasons it seems appropriate to cre-
ate the null hypothesis for the present data from the experi-
mental recordings itself.

An adequate null hypothesis can be an average over all
possible dynamical states of the brain during the resting
state, avoiding activities like eye movement, swallowing,
and other artifacts. Statistically significant deviations from
this average are then believed to indicate relevant correla-
tions distinct from those of the usual resting behavior. For
this purpose we defined an artifact-free reference interval of
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FIG. 5. (a) A segment of 125 s from an EEG recording at elec-
trode F3. From about 499 to 512 s the large amplitude activity of a
generalized epileptic seizure can be seen. At approximately 405 and
485 s artifacts caused by muscular movement occur. (b) KS prob-
ability for the coincidence of the nearest-neighbor distributions of
the first seven distances with the null hypothesis and (c) the same as
in (b) for the distances sg to 5. The null hypothesis was calculated
as an average over an artifact-free period between 200 to 250 s of
the same recording. The solid vertical line marks the onset of the
seizure. The dashed vertical line indicates when the moving win-
dow starts to overlap with the seizure period.

the same EEG recording between 200 and 250 s. Shifting T
over this segment an ensemble of 12 726 correlation matrices
is created. For each of the 18 distances between the eigen-
values we calculate the nearest-neighbor distribution, which
is then used as the null hypothesis for further analysis.

The analysis of the EEG data is performed as follows.
Within an interval of /=10 s of the data set an ensemble of
2485 correlation matrices are constructed by moving 7 with
maximal overlap over the time interval /. Note that a period
of the order of 10 s of EEG data is assumed to reflect almost
stationary behavior of the electrical brain activity (for ex-
ample, cf. Ref. [32]). Then, I is moved with a step width of
1 s along the data set; for each step calculating the nearest-
neighbor distribution of the 18 distances after using Eq. (12)
for the individual unfolding. Comparison with the null hy-
pothesis is performed employing a KS test. The results are
shown in Fig. 5(b) for the distances between the eight small-
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FIG. 6. Nearest-neighbor distributions obtained by individual unfolding for the EEG recording shown in Fig. 5 for distance s,g [panels
(a), (b), and (c)] and distance s, [panels (d), (), and (f)]. The null hypothesis is displayed as a gray line. The histograms drawn with a black
line present an average over the period 395 to 415 s [panels (a) and (d)], which includes a muscle artifact, an artifact-free period between
440 and 460 s [panels (b) and (e)], and during the seizure period betwen 499 and 512 s [panels (c) and (f)].

est eigenvalues and Fig. 5(c) for those between the 12 largest
eigenvalues. Note the different scales of the logarithmic rep-
resentation.

The nearest-neighbor distribution of the largest eigenval-
ues [Fig. 5(c)], reflecting the overall behavior of the system,
is close to the null hypothesis during almost the whole time
course. The KS test gives a result close to 100% probability
for coincidence. Only when the interval I starts to overlap
with the period of epileptic activity (indicated by the vertical
dashed line) drastic deviations occur as expected because of
the change of the global correlation structure during the sei-
zure. In contrast, the dynamics of the smallest eigenvalues
turns out to be more sensitive for the detection of subtle
changes of the brain dynamics [Fig. 5(b)]. During the artifact
at 405 s the distribution of the distances between a number
of smallest eigenvalues show large deviations from the cor-
responding distributions calculated for the reference interval.
A similar behavior can be observed for the small eye move-
ment artifact at about 485 s. Although the effect is not as
pronounced as in the previous case, the nearest-neighbor dis-
tributions measured at the lower edge of the spectrum indi-
cate nicely the temporal position of the artifact.

In general, artifacts caused by swallowing, eye move-
ment, etc. go along with correlations measured predomi-
nantly by only a subset of all electrodes. Consequently, such
an event is more comparable to situations discussed in Figs.
1 and 2, i.e., where only a small fraction of the signals cor-
relate. As shown by means of simulated systems, this infor-
mation can be measured more sensitively at the lower part of
the spectrum. Hence, the nearest-neighbor distributions for
the s; between large eigenvalues are close to the null hypoth-
esis during almost the whole time course of the EEG and
react drastically only during the seizure, whereas the distri-
butions measured for small eigenvalues show significant de-
viations for more subtle changes of the correlation structure.

In Fig. 6 some examples of nearest-neighbor distributions,
calculated in different segments of the EEG are presented in

comparison with the null hypothesis. The first row shows the
results for the distance s;g between the two largest eigenval-
ues and the second row the same for s;. The first column
displays the behavior during the artifact at 405 s, the second
one during an artifact-free period and the third column re-
flects the features of the epileptic seizure. The distribution
for 5,4 is close to its null hypothesis during almost the whole
time course. Even the artifact at 405 s does not significantly
alter the distribution. This picture is changed when the epi-
leptic activity initiates. As the generalized seizure presents a
highly collective dynamical state, it is not surprising that it is
clearly reflected in the dynamics of the largest eigenstates,
which measure the global collective behavior of the whole
system. During the seizure period the distribution of s;g is
considerably narrower than the null hypothesis and shows a
pronounced peak at s;g=1. This fact indicates the expected
increase of correlations in the entire system. On the contrary,
the distribution of s; shows its most prominent deviation
during the artifact. Not even the epileptic activity causes ma-
jor changes in the distribution of s;.

VI. DISCUSSION AND CONCLUSIONS

While the nondiagonal elements C;; of the correlation ma-
trix have a direct interpretation as cross-correlation coeffi-
cients between signal X; and X; (disregarding the influence of
the random correlations), the eigenvalues are in general a
complicated mixture of all these coefficients and their inter-
pretation is at first not obvious. In Ref. [17] it was shown
that changes of the nonrandom cross correlations between
the different time series of a multivariate dataset imply non-
random level repulsions between the eigenvalues of C.
Which eigenstates repel depends on the strength and type of
correlations and the number of correlated time series. In this
way, information about the correlation structure, or its dy-
namics, is induced in comparably small sections of the whole
spectrum—occasionally between two states only. Hence, em-
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ploying a spectral average during the unfolding transforma-
tion, this information is washed out or might even be lost
completely as discussed in Fig. 4. For this reason we pro-
posed an unfolding by simply normalizing the distances by
its ensemble average. Then the nearest-neighbor distribution
can be calculated for each of the distances individually. This
technique permits us to detect precisely in which part of the
spectrum correlations are induced.

With the help of simulated systems like N-tori or Rossler
systems we gave clear numerical evidence for these state-
ments. The nonrandom repulsion between eigenvalues in-
creases the stiffness of the distances, consequently leading to
significant deviations from the universal properties of the
GOE for the nearest-neighbor distribution. In the examples
discussed in this paper, especially the sharp cut between
those parts of the spectrum influenced by noise and random
correlation and those parts that carry genuine information
about the correlations is remarkable.

We could prove that in cases where only a small fraction
of all signals X;,i=1,...,M (de)correlate, this information is
implemented with higher significance at the lower part of the
spectrum. This fact could be explained by the collective
character of the large eigenstates, which carry components
not only from the correlated subspace, but also from the
random part [17].

Finally, we could prove the applicability of the method by
analyzing nonstationary experimental data using a sliding
window in which the empirical ensembles are created. Here,
an average over the data itself is used as a kind of null
hypothesis, instead of comparing results with the GOE. The
reason for that is that in general the correlations of EEG data

PHYSICAL REVIEW E 74, 041119 (2006)

measured from a person at resting state are not of GOE type.
This is true not only because of correlations caused by the
electrical brain activity but also because of possible station-
ary correlations induced by the choice of the EEG reference.

By using a KS test when measuring the deviation from
our null hypothesis, we could detect nonstationary dynamics
like artifacts in the behavior of the lowest eigenvalues, while
such events are almost invisible in the upper half of the spec-
trum. The deviations from the null hypothesis for the level
statistics at the lower part of the spectrum we attribute to the
fact that artifacts cause correlations between only a fraction
of all signals. As discussed in Figs. 1 and 2, these more
subtle changes in the global correlation structure of the
whole data set can be measured with higher sensitivity and
better statistical significance in the changes of the smallest
eigenvalues of C. Due to the collective character of the larg-
est \, these tiny features are hidden within the overall behav-
ior of the system.

The real-world example illustrates in a clear manner that
the way of individual unfolding and calculating RMT mea-
sures such as the nearest-neighbor distribution individually
for each of the level distances, can give detailed insight into
the characteristics of the correlation structure of a multivari-
ate data set. We believe that the technique presented in this
paper is highly promising even in cases where nonstationary
systems are in consideration and one is unable to create large
matrix ensembles.
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